Towards sustainable extraction of technology materials through integrated approaches

Lona Huebner

1. Sovacool, B. K. et al. Sustainable minerals and metals for a low-carbon future. Science 367, 30–33 (2020). Article  Google Scholar  2. Hund, K., La Porta, D., Fabregas, T. P., Laing, T. & Drexhage, J. Minerals for climate action: the mineral intensity of the clean energy transition (World Bank, 2020). […]

  • 1.

    Sovacool, B. K. et al. Sustainable minerals and metals for a low-carbon future. Science 367, 30–33 (2020).

    Article 

    Google Scholar
     

  • 2.

    Hund, K., La Porta, D., Fabregas, T. P., Laing, T. & Drexhage, J. Minerals for climate action: the mineral intensity of the clean energy transition (World Bank, 2020).

  • 3.

    International Energy Agency. Energy technology perspectives 2017: catalysing energy technology transformations (IEA, 2017).

  • 4.

    Lèbre, É. et al. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 4823 (2020).

    Article 

    Google Scholar
     

  • 5.

    Mancini, L. & Sala, S. Social impact assessment in the mining sector: review and comparison of indicators frameworks. Resour. Policy 57, 98–111 (2018).

    Article 

    Google Scholar
     

  • 6.

    International Renewable Energy Agency. Global renewables outlook: energy transformation 2050 (IRENA, 2020).

  • 7.

    International Bank for Reconstruction and Development & The World Bank. The growing role of minerals and metals for a low carbon future (World Bank, 2017). Identified the relationship between the low-carbon economy and the increased demand in minerals and metals needed for this technology transition.

  • 8.

    Pastukhova, M. & Westphal, K. Governing the global energy transformation. Lect. Notes Energy 73, 341–364 (2020).

    Article 

    Google Scholar
     

  • 9.

    Giurco, D., Dominish, E., Florin, N., Watari, T. & McLellan, B. in Achieving the Paris Climate Agreement Goals (ed. Teske, S.) 437–457 (Springer, 2019).

  • 10.

    Ali, S. H. et al. Corrigendum: Mineral supply for sustainable development requires resource governance. Nature 547, 246 (2017).

    Article 

    Google Scholar
     

  • 11.

    Graedel, T. E., Harper, E. M., Nassar, N. T. & Reck, B. K. On the materials basis of modern society. Proc. Natl Acad. Sci. USA 112, 6295–6300 (2015). Identified the growing trend for complexity of materials in modern society.

    Article 

    Google Scholar
     

  • 12.

    Wall, F., Rollat, A. & Pell, R. S. Responsible sourcing of critical metals. Element 13, 313–318 (2017). Identified the connection between geology and LCA for critical metals for selecting projects with favourable conditions for lower environmental impacts.

    Article 

    Google Scholar
     

  • 13.

    Deng, J., Bae, C., Denlinger, A. & Miller, T. Electric vehicles batteries: requirements and challenges. Joule 4, 511–515 (2020).

    Article 

    Google Scholar
     

  • 14.

    Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

    Article 

    Google Scholar
     

  • 15.

    Hausfather, Z. Factcheck: how electric vehicles help to tackle climate change. CarbonBrief https://www.carbonbrief.org/factcheck-how-electric-vehicles-help-to-tackle-climate-change (2020).

  • 16.

    Dai, Q., Kelly, J. C., Gaines, L. & Wang, M. Life cycle analysis of lithium-ion batteries for automotive applications. Batteries 5, 48 (2019).

    Article 

    Google Scholar
     

  • 17.

    Zhang, H., Lu, W. & Li, X. Progress and perspectives of flow battery technologies. Electrochem. Energy Rev. 2, 492–506 (2019).

    Article 

    Google Scholar
     

  • 18.

    Voncken, J. H. L. The Rare Earth Elements: An Introduction (Springer, 2016).

  • 19.

    Ma, B. M. et al. Recent development in bonded NdFeB magnets. J. Magn. Magn. Mater. 239, 418–423 (2002).

    Article 

    Google Scholar
     

  • 20.

    Cui, J. et al. Current progress and future challenges in rare-earth-free permanent magnets. Acta Mater. 158, 118–137 (2018).

    Article 

    Google Scholar
     

  • 21.

    Goodenough, K. M., Wall, F. & Merriman, D. The rare earth elements: demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 27, 201–216 (2018).

    Article 

    Google Scholar
     

  • 22.

    Roskill. Rare earths: global industry, markets and outlook to 2026 (Roskill Information Services, 2016).

  • 23.

    Mudd, G. M. Global trends and environmental issues in nickel mining: sulfides versus laterites. Ore Geol. Rev. 38, 9–26 (2010). Identified the trend in global nickel resources and reserves from sulfides to laterites and provided insight on how this might impact the environmental performance of nickel production.

    Article 

    Google Scholar
     

  • 24.

    Elshkaki, A., Graedel, T. E., Ciacci, L. & Reck, B. K. Copper demand, supply, and associated energy use to 2050. Glob. Environ. Change 39, 305–315 (2016).

    Article 

    Google Scholar
     

  • 25.

    Elshkaki, A., Lei, S. & Chen, W.-Q. Material-energy-water nexus: modelling the long term implications of aluminium demand and supply on global climate change up to 2050. Environ. Res. 181, 108964 (2020).

    Article 

    Google Scholar
     

  • 26.

    Dai, Q., Kelly, J. C., Dunn, J. & Benavides, P. Update of bill-of-materials and cathode materials production for lithium-ion batteries in the GREET model (Argonne National Laboratory, 2018).

  • 27.

    Lewis, L. H., Sellers, C. H. & Panchanathan, V. Factors affecting coercivity in rare-earth-based advanced permanent magnet materials (Brookhaven National Laboratory, 1997).

  • 28.

    NPCS Board of Consultants & Engineers. Handbook on Rare Earth Metals and Alloys (Asia Pacific Business Press, 2009).

  • 29.

    Liu, H., Zhang, Y., Luan, Y., Yu, H. & Li, D. Research progress in preparation and purification of rare earth metals. Metals 10, 1376 (2020).

    Article 

    Google Scholar
     

  • 30.

    Warner, J. T. The Handbook of Lithium-Ion Battery Pack Design: Chemistry, Components, Types and Terminology (Elsevier, 2015).

  • 31.

    Yuan, X., Liu, H. & Zhang, J. Lithium-Ion Batteries: Advanced Materials and Technologies (CRC, 2016).

  • 32.

    Lu, L., Han, X., Li, J., Hua, J. & Ouyang, M. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sour. 226, 272–288 (2013).

    Article 

    Google Scholar
     

  • 33.

    Kumar, V. Lithium-ion battery supply chain technology development and investment opportunities (Benchmark Mineral Intelligence, 2020).

  • 34.

    Ambrose, H. & Kendall, A. Understanding the future of lithium: Part 2, temporally and spatially resolved life-cycle assessment modeling. J. Ind. Ecol. 24, 90–100 (2020).

    Article 

    Google Scholar
     

  • 35.

    Weng, Z., Jowitt, S. M., Mudd, G. M. & Haque, N. A detailed assessment of global rare earth element resources: opportunities and challenges. Econ. Geol. 110, 1925–1952 (2015).

    Article 

    Google Scholar
     

  • 36.

    Verplanck, P. L., Mariano, A. N. & Mariano, A. Jr. in Rare Earth and Critical Elements in Ore Deposits (Society of Economic Geologists, 2016).

  • 37.

    Dostal, J. Rare earth element deposits of alkaline igneous rocks. Resources 6, 34 (2017).

    Article 

    Google Scholar
     

  • 38.

    Chakhmouradian, A. R. & Zaitsev, A. N. Rare earth mineralization in igneous rocks: sources and processes. Elements 8, 347–353 (2012).

    Article 

    Google Scholar
     

  • 39.

    Spandler, C., Slezak, P. & Nazari-Dehkordi, T. Tectonic significance of Australian rare earth element deposits. Earth Sci. Rev. 207, 103219 (2020).

    Article 

    Google Scholar
     

  • 40.

    Mudd, G. M. & Jowitt, S. M. Rare earth elements from heavy mineral sands: assessing the potential of a forgotten resource. Appl. Earth Sci. 125, 107–113 (2016).

    Article 

    Google Scholar
     

  • 41.

    Sengupta, D. & Van Gosen, B. S. Placer-type rare earth element deposits. Rev. Econ. Geol. 18, 81–100 (2016).


    Google Scholar
     

  • 42.

    Borst, A. M. et al. Adsorption of rare earth elements in regolith-hosted clay deposits. Nat. Commun. 11, 4386 (2020).

    Article 

    Google Scholar
     

  • 43.

    Rahardja, S., Artuso, F. & Maw, A. K. M. Reforming export licenses in Myanmar: recommendations for Ministry of Commerce (World Bank, 2020).

  • 44.

    Sanematsu, K., Kon, Y., Imai, A., Watanabe, K. & Watanabe, Y. Geochemical and mineralogical characteristics of ion-adsorption type REE mineralization in Phuket, Thailand. Miner. Deposita 48, 437–451 (2013).

    Article 

    Google Scholar
     

  • 45.

    Estrade, G., Marquis, E., Smith, M., Goodenough, K. & Nason, P. REE concentration processes in ion adsorption deposits: evidence from the Ambohimirahavavy alkaline complex in Madagascar. Ore Geol. Rev. 112, 103027 (2019).

    Article 

    Google Scholar
     

  • 46.

    Jordens, A., Cheng, Y. P. & Waters, K. E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 41, 97–114 (2013).

    Article 

    Google Scholar
     

  • 47.

    Jha, M. K. et al. Review on hydrometallurgical recovery of rare earth metals. Hydrometallurgy 165, 2–26 (2016).

    Article 

    Google Scholar
     

  • 48.

    Davris, P. et al. Leaching of rare earth elements from eudialyte concentrate by suppressing silica gel formation. Miner. Eng. 108, 115–122 (2017).

    Article 

    Google Scholar
     

  • 49.

    Bowell, R. J., Lagos, L., de los Hoyos, C. R. & Declercq, J. Classification and characteristics of natural lithium resources. Elements 16, 259–264 (2020).

    Article 

    Google Scholar
     

  • 50.

    Munk, L. A. et al. Lithium brines: a global perspective. Rev. Economic Geol. 18, 339–365 (2016).


    Google Scholar
     

  • 51.

    Kesler, S. E. et al. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 48, 55–69 (2012).

    Article 

    Google Scholar
     

  • 52.

    Linnen, R. L., Van Lichtervelde, M. & Černý, P. Granitic pegmatites as sources of strategic metals. Elements 8, 275–280 (2012).

    Article 

    Google Scholar
     

  • 53.

    Mohr, S. H., Mudd, G. M. & Giurco, D. Lithium resources and production: critical assessment and global projections. Minerals 2, 65–84 (2012).

    Article 

    Google Scholar
     

  • 54.

    Castor, S. B. & Henry, C. D. Lithium-rich claystone in the McDermitt Caldera, Nevada, USA: geologic, mineralogical, and geochemical characteristics and possible origin. Minerals 10, 68 (2020).

    Article 

    Google Scholar
     

  • 55.

    Gourcerol, B., Gloaguen, E., Melleton, J., Tuduri, J. & Galiegue, X. Re-assessing the European lithium resource potential–A review of hard-rock resources and metallogeny. Ore Geol. Rev. 109, 494–519 (2019).

    Article 

    Google Scholar
     

  • 56.

    Flexer, V., Baspineiro, C. F. & Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 639, 1188–1204 (2018).

    Article 

    Google Scholar
     

  • 57.

    Chagnes, A. & Swiatowska, J. Lithium Process Chemistry: Resources, Extraction, Batteries, and Recycling (Elsevier, 2015).

  • 58.

    Dessemond, C., Lajoie-Leroux, F., Soucy, G., Laroche, N. & Magnan, J.-F. Spodumene: the lithium market, resources and processes. Minerals 9, 334 (2019).

    Article 

    Google Scholar
     

  • 59.

    Karrech, A., Azadi, M. R., Elchalakani, M., Shahin, M. A. & Seibi, A. C. A review on methods for liberating lithium from pegmatities. Miner. Eng. 145, 106085 (2020).

    Article 

    Google Scholar
     

  • 60.

    Meng, F., McNeice, J., Zadeh, S. S. & Ghahreman, A. Review of lithium production and recovery from minerals, brines, and lithium-ion batteries. Miner. Process. Extr. Metall. Rev. 42, 123–141 (2021).

    Article 

    Google Scholar
     

  • 61.

    Horn, S. et al. Cobalt resources in Europe and the potential for new discoveries. Ore Geol. Rev. 130, 103915 (2020).

    Article 

    Google Scholar
     

  • 62.

    Dominy, S. C., O’Connor, L., Parbhakar-Fox, A., Glass, H. J. & Purevgerel, S. Geometallurgy — A route to more resilient mine operations. Minerals 8, 560 (2018). Providing a guideline and an overview on how to approach geometallurgy to understand mine operations and increase resilience of the operation.

    Article 

    Google Scholar
     

  • 63.

    Dehaine, Q., Michaux, S. P., Pokki, J., Kivinen, M. & Butcher, A. Battery minerals from Finland: Improving the supply chain for the EU battery industry using a geometallurgical approach. Eur. Geol. https://doi.org/10.5281/zenodo.3938855 (2020).

  • 64.

    Dunham, S., Vann, J. & Coward, S. in Proceedings of the First AusIMM International Geometallurgy Conference (Australasian Institute of Mining and Metallurgy, 2011).

  • 65.

    Dehaine, Q., Tijsseling, L. T., Glass, H. J., Törmänen, T. & Butcher, A. R. Geometallurgy of cobalt ores: a review. Miner. Eng. 160, 106656 (2021).

    Article 

    Google Scholar
     

  • 66.

    Cailteux, J. L. H., Kampunzu, A. B., Lerouge, C., Kaputo, A. K. & Milesi, J. P. Genesis of sediment-hosted stratiform copper–cobalt deposits, central African Copperbelt. J. Afr. Earth Sci. 42, 134–158 (2005).

    Article 

    Google Scholar
     

  • 67.

    Lusty, P. A. J. & Murton, B. J. Deep-ocean mineral deposits: metal resources and windows into earth processes. Elements 14, 301–306 (2018).

    Article 

    Google Scholar
     

  • 68.

    Schmidt, T., Buchert, M. & Schebek, L. Investigation of the primary production routes of nickel and cobalt products used for Li-ion batteries. Resour. Conserv. Recycl. 112, 107–122 (2016).

    Article 

    Google Scholar
     

  • 69.

    Crundwell, F., Moats, M., Ramachandran, V., Robinson, T. & Davenport, W. G Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals (Elsevier, 2011).

  • 70.

    Mudd, G. M. & Jowitt, S. M. A detailed assessment of global nickel resource trends and endowments. Econ. Geol. 109, 1813–1841 (2014).

    Article 

    Google Scholar
     

  • 71.

    Norgate, T. & Jahanshahi, S. Assessing the energy and greenhouse gas footprints of nickel laterite processing. Miner. Eng. 24, 698–707 (2011).

    Article 

    Google Scholar
     

  • 72.

    Riekkola-Vanhanen, M. Talvivaara mining company–From a project to a mine. Miner. Eng. 48, 2–9 (2013).

    Article 

    Google Scholar
     

  • 73.

    Cannon, W. F., Kimball, B. E. & Corathers, L. A. in Critical Mineral Resources of the United States — Economic and Environmental Geology and Prospects for Future Supply Vol. L (USGS, 2017).

  • 74.

    Beukes, N. J., Swindell, E. P. W. & Wabo, H. Manganese deposits of Africa. Episodes J. Int. Geosci. 39, 285–317 (2016).

    Article 

    Google Scholar
     

  • 75.

    Paulikas, D., Katona, S., Ilves, E. & Ali, S. H. Life cycle climate change impacts of producing battery metals from land ores versus deep-sea polymetallic nodules. J. Clean. Prod. 275, 123822 (2020).

    Article 

    Google Scholar
     

  • 76.

    Jara, A. D., Betemariam, A., Woldetinsae, G. & Kim, J. Y. Purification, application and current market trend of natural graphite: a review. Int. J. Min. Sci. Technol. 29, 671–689 (2019).

    Article 

    Google Scholar
     

  • 77.

    Olson, D. W., Virta, R. L., Mahdavi, M., Sangine, E. S. & Fortier, S. M. Natural graphite demand and supply — Implications for electric vehicle battery requirements. Geol. Soc. Am. Spec. Pap. 520, 67–77 (2016).


    Google Scholar
     

  • 78.

    Magampa, P. P., Manyala, N. & Focke, W. W. Properties of graphite composites based on natural and synthetic graphite powders and a phenolic novolac binder. J. Nucl. Mater. 436, 76–83 (2013).

    Article 

    Google Scholar
     

  • 79.

    Luque, F. J. et al. Vein graphite deposits: geological settings, origin, and economic significance. Miner. Deposita 49, 261–277 (2014).

    Article 

    Google Scholar
     

  • 80.

    Cui, N., Sun, L., Bagas, L., Xiao, K. & Xia, J. Geological characteristics and analysis of known and undiscovered graphite resources of China. Ore Geol. Rev. 91, 1119–1129 (2017).

    Article 

    Google Scholar
     

  • 81.

    Wurm, C., Oettinger, O., Wittkaemper, S., Zauter, R. & Vuorilehto, K. in Lithium-Ion Batteries: Basics and Applications (ed. Korthauer, R.) 43–58 (Springer, 2018).

  • 82.

    Dante, R. C. Handbook of Friction Materials and their Applications (Woodhead, 2015).

  • 83.

    Acheson, E. G. Process of making graphite. US Patent 711,031-A (1902).

  • 84.

    Wissler, M. Graphite and carbon powders for electrochemical applications. J. Power Sources 156, 142–150 (2006).

    Article 

    Google Scholar
     

  • 85.

    Kim, T., Lee, J. & Lee, K.-H. Full graphitization of amorphous carbon by microwave heating. RSC Adv. 6, 24667–24674 (2016).

    Article 

    Google Scholar
     

  • 86.

    Van der Voet, E., Van Oers, L., Verboon, M. & Kuipers, K. Environmental implications of future demand scenarios for metals: methodology and application to the case of seven major metals. J. Ind. Ecol. 23, 141–155 (2019).

    Article 

    Google Scholar
     

  • 87.

    British Standards Institution. Environmental management. Life cycle assessment. Principles and framework. BSI https://linkresolver.bsigroup.com/junction/resolve/000000000001139131?restype=undated (2015).

  • 88.

    Hunt, R. G., Franklin, W. E. & Hunt, R. G. LCA — How it came about. Int. J. Life Cycle Assess. 1, 4–7 (1996).

    Article 

    Google Scholar
     

  • 89.

    Farjana, S. H., Huda, N. & Mahmud, M. A. P. Life cycle assessment of cobalt extraction process. J. Sustain. Min. 18, 150–161 (2019).

    Article 

    Google Scholar
     

  • 90.

    European Commission. ILCD Handbook: General Guide on Life Cycle Assessment: Detailed Guidance (Publications Office of the European Union, 2010).

  • 91.

    British Standards Institution. Greenhouse gases. Carbon footprint of products. Requirements and guidelines for quantification and communication. BSI https://linkresolver.bsigroup.com/junction/resolve/000000000030297217?restype=undated (2015).

  • 92.

    Fenner, A. E. et al. The carbon footprint of buildings: a review of methodologies and applications. Renew. Sustain. Energy Rev. 94, 1142–1152 (2018).

    Article 

    Google Scholar
     

  • 93.

    Greenhouse Gas Protocol. Product life cycle accounting and reporting standard. GHG Protocol https://ghgprotocol.org/product-standard (2011).

  • 94.

    Meinrenken, C. J. et al. Carbon emissions embodied in product value chains and the role of Life Cycle Assessment in curbing them. Sci. Rep. 10, 6184 (2020).

    Article 

    Google Scholar
     

  • 95.

    Weidema, B. P., Thrane, M., Christensen, P., Schmidt, J. & Løkke, S. Carbon footprint: a catalyst for life cycle assessment? J. Ind. Ecol. 12, 3–6 (2008).

    Article 

    Google Scholar
     

  • 96.

    Heijungs, R. Ecodesign — carbon footprint — life cycle assessment — life cycle sustainability analysis. A flexible framework for a continuum of tools. Environ. Clim. Technol. 4, 42–46 (2010).


    Google Scholar
     

  • 97.

    Nansai, K. et al. Global flows of critical metals necessary for low-carbon technologies: the case of neodymium, cobalt, and platinum. Environ. Sci. Technol. 48, 1391–1400 (2014).

    Article 

    Google Scholar
     

  • 98.

    Jiang, S. et al. Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. J. Environ. Manage. 262, 110253 (2020).

    Article 

    Google Scholar
     

  • 99.

    Zaimes, G. G., Hubler, B. J., Wang, S. & Khanna, V. Environmental life cycle perspective on rare earth oxide production. ACS Sustain. Chem. Eng. 3, 237–244 (2015).

    Article 

    Google Scholar
     

  • 100.

    Pell, R., Wall, F., Yan, X., Li, J. & Zeng, X. Mineral processing simulation based-environmental life cycle assessment for rare earth project development: A case study on the Songwe Hill project. J. Environ. Manage. 249, 109353 (2019).

    Article 

    Google Scholar
     

  • 101.

    Pell, R., Wall, F., Yan, X., Li, J. & Zeng, X. Temporally explicit life cycle assessment as an environmental performance decision making tool in rare earth project development. Miner. Eng. 135, 64–73 (2019).

    Article 

    Google Scholar
     

  • 102.

    Vahidi, E., Navarro, J. & Zhao, F. An initial life cycle assessment of rare earth oxides production from ion-adsorption clays. Resour. Conserv. Recycl. 113, 1–11 (2016).

    Article 

    Google Scholar
     

  • 103.

    Deng, H. & Kendall, A. Life cycle assessment with primary data on heavy rare earth oxides from ion-adsorption clays. Int. J. Life Cycle Assess. 24, 1643–1652 (2019).

    Article 

    Google Scholar
     

  • 104.

    Browning, C., Northey, S., Haque, N., Bruckard, W. & Cooksey, M. in REWAS 2016 (eds Kirchain, R. E. et al.) 83–88 (Springer, 2016).

  • 105.

    Sprecher, B. et al. Life cycle inventory of the production of rare earths and the subsequent production of NdFeB rare earth permanent magnets. Environ. Sci. Technol. 48, 3951–3958 (2014).

    Article 

    Google Scholar
     

  • 106.

    Vahidi, E. & Zhao, F. Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction. J. Environ. Manage. 203, 255–263 (2017).

    Article 

    Google Scholar
     

  • 107.

    Joyce, P. J., Goronovski, A., Tkaczyk, A. H. & Björklund, A. A framework for including enhanced exposure to naturally occurring radioactive materials (NORM) in LCA. Int. J. Life Cycle Assess. 22, 1078–1095 (2017).

    Article 

    Google Scholar
     

  • 108.

    Pell, R. et al. The CO2 Impact of the 2020s Battery Quality Lithium Hydroxide Supply Chain (Minviro, 2019).

  • 109.

    Notter, D. A. et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44, 6550–6556 (2010).

    Article 

    Google Scholar
     

  • 110.

    Schomberg, A. C., Bringezu, S. & Flörke, M. Extended life cycle assessment reveals the spatially-explicit water scarcity footprint of a lithium-ion battery storage. Commun. Earth Environ. 2, 11 (2021).

    Article 

    Google Scholar
     

  • 111.

    Corenthal, L. G., Boutt, D. F., Hynek, S. A. & Munk, L. A. Regional groundwater flow and accumulation of a massive evaporite deposit at the margin of the Chilean Altiplano. Geophys. Res. Lett. 43, 8017–8025 (2016).

    Article 

    Google Scholar
     

  • 112.

    Aldunate, C. A. Caracterización hidrogeológica e hidroquímica del sector sur del Salar de Atacama, II región de Antofagasta, Chile (Universidad de Málaga, 2014).

  • 113.

    Risacher, F. & Fritz, B. Origin of salts and brine evolution of bolivian and chilean salars. Aquat. Geochem. 15, 123–157 (2009).

    Article 

    Google Scholar
     

  • 114.

    Valdés-Pineda, R. et al. Water governance in Chile: availability, management and climate change. J. Hydrol. 519, 2538–2567 (2014).

    Article 

    Google Scholar
     

  • 115.

    Cobalt Institute. The environmental performance of refined cobalt. Life cycle inventory and life cycle assessment of refined cobalt (Cobalt Institute, 2016).

  • 116.

    Mudd, G. M., Weng, Z., Jowitt, S. M., Turnbull, I. D. & Graedel, T. E. Quantifying the recoverable resources of by-product metals: the case of cobalt. Ore Geol. Rev. 55, 87–98 (2013).

    Article 

    Google Scholar
     

  • 117.

    Dai, Q., Kelly, J. C. & Elgowainy, A. Cobalt life cycle analysis update for the GREET model (Argonne National Laboratory, 2019).

  • 118.

    Pell, R. & Tijsseling, T. First cobalt refinery — life cycle assessment (Minviro, 2020).

  • 119.

    Mistry, M., Gediga, J. & Boonzaier, S. Life cycle assessment of nickel products. Int. J. Life Cycle Assess. 21, 1559–1572 (2016).

    Article 

    Google Scholar
     

  • 120.

    Farjana, S. H., Huda, N., Mahmud, M. A. P. & Lang, C. A global life cycle assessment of manganese mining processes based on EcoInvent database. Sci. Total Environ. 688, 1102–1111 (2019).

    Article 

    Google Scholar
     

  • 121.

    Wernet, G. et al. The ecoinvent database version 3 (part I): overview and methodology. Int. J. Life Cycle Assess. 21, 1218–1230 (2016).

    Article 

    Google Scholar
     

  • 122.

    Zhang, R. et al. Life cycle assessment of electrolytic manganese metal production. J. Clean. Prod. 253, 119951 (2020).

    Article 

    Google Scholar
     

  • 123.

    Zhang, Q. Q., Gong, X. Z. & Meng, X. C. Environment impact analysis of natural graphite anode material production. Mater. Sci. Forum 913, 1011–1017 (2018).

    Article 

    Google Scholar
     

  • 124.

    Steinberg, W. S., Geyser, W. & Nell, J. The history and development of the pyrometallurgical processes at Evraz Highveld Steel & Vanadium. J. South. Afr. Inst. Min. Metall. 111, 705–710 (2011).


    Google Scholar
     

  • 125.

    Weber, S., Peters, J. F., Baumann, M. & Weil, M. Life cycle assessment of a vanadium redox flow battery. Environ. Sci. Technol. 52, 10864–10873 (2018).

    Article 

    Google Scholar
     

  • 126.

    Koltun, P. & Klymenko, V. Cradle-to-gate life cycle assessment of the production of separated mix of rare earth oxides based on Australian production route. Min. Miner. Depos. 14, 1–15 (2020).

    Article 

    Google Scholar
     

  • 127.

    Villares, M., Işıldar, A., van der Giesen, C. & Guinée, J. Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. Int. J. Life Cycle Assess. 22, 1618–1633 (2017).

    Article 

    Google Scholar
     

  • 128.

    Schenck, R. & White, P. Environmental Life Cycle Assessment: Measuring the Environmental Performance of Products (American Center for Life Cycle Assessment, 2014).

  • 129.

    Maier, M., Mueller, M. & Yan, X. Introducing a localised spatio-temporal LCI method with wheat production as exploratory case study. J. Clean. Prod. 140, 492–501 (2017).

    Article 

    Google Scholar
     

  • 130.

    Wall, F. & Pell, R. in Handbook on the Physics and Chemistry of Rare Earths (eds Bünzli, J.-C. & Pecharsky, V. K.) 155–194 (Elsevier, 2020).

  • 131.

    Williams, S. R. & Richardson, J. M. in Proceedings of the 36th Annual Meeting of the Canadian Mineral Processors Conference 241–268 (SGS Minerals Services, 2004).

  • 132.

    Dominy, S. C. & O’Connor, L. in Proceedings of the Third AusIMM International Geometallurgy Conference (Australasian Institute of Mining and Metallurgy, 2016).

  • 133.

    Lund, C. & Lamberg, P. Geometallurgy–a tool for better resource efficiency. Eur. Geol. 37, 39–43 (2014).


    Google Scholar
     

  • 134.

    Lishchuk, V., Koch, P.-H., Ghorbani, Y. & Butcher, A. R. Towards integrated geometallurgical approach: critical review of current practices and future trends. Miner. Eng. 145, 106072 (2020).

    Article 

    Google Scholar
     

  • 135.

    Beaumont, C. & Musingwini, C. Application of geometallurgical modelling to mine planning in a copper-gold mining operation for improving ore quality and mineral processing efficiency. J. South. Afr. Inst. Min. Metall. 119, 243–252 (2019).

    Article 

    Google Scholar
     

  • 136.

    Dehaine, Q., Filippov, L. O., Glass, H. J. & Rollinson, G. Rare-metal granites as a potential source of critical metals: a geometallurgical case study. Ore Geol. Rev. 104, 384–402 (2019).

    Article 

    Google Scholar
     

  • 137.

    Parbhakar-Fox, A., Glen, J. & Raimondo, B. A geometallurgical approach to tailings management: an example from the Savage River Fe-ore mine, Western Tasmania. Minerals 8, 454 (2018).

    Article 

    Google Scholar
     

  • 138.

    Brough, C. P., Warrender, R., Bowell, R. J., Barnes, A. & Parbhakar-Fox, A. The process mineralogy of mine wastes. Miner. Eng. 52, 125–135 (2013).

    Article 

    Google Scholar
     

  • 139.

    Segura-Salazar, J., Lima, F. M. & Tavares, L. M. Life Cycle Assessment in the minerals industry: current practice, harmonization efforts, and potential improvement through the integration with process simulation. J. Clean. Prod. 232, 174–192 (2019).

    Article 

    Google Scholar
     

  • 140.

    Parbhakar-Fox, A. in Environmental Indicators in Metal Mining (ed. Lottermoser, B.) 73–96 (Springer, 2017).

  • 141.

    Parbhakar-Fox, A., Lottermoser, B. & Bradshaw, D. Evaluating waste rock mineralogy and microtexture during kinetic testing for improved acid rock drainage prediction. Miner. Eng. 52, 111–124 (2013).

    Article 

    Google Scholar
     

  • 142.

    Reuter, M. A., van Schaik, A. & Gediga, J. Simulation-based design for resource efficiency of metal production and recycling systems: cases-copper production and recycling, e-waste (LED lamps) and nickel pig iron. Int. J. Life Cycle Assess. 20, 671–693 (2015).

    Article 

    Google Scholar
     

  • 143.

    Abadías Llamas, A. et al. Simulation-based exergy, thermo-economic and environmental footprint analysis of primary copper production. Miner. Eng. 131, 51–65 (2019).

    Article 

    Google Scholar
     

  • 144.

    Suvio, P., Kotiranta, T., Kauppi, J. & Jansson, K. in Proceedings of the 13th International Mine Water Association (IMWA) Congress 226–236 (LUT Scientific and Expertise Publications, 2017).

  • 145.

    Elomaa, H., Rintala, L., Aromaa, J. & Lundström, M. Process simulation based life cycle assessment of cyanide-free refractory gold concentrate processing — Case study: cupric chloride leaching. Miner. Eng. 157, 106559 (2020).

    Article 

    Google Scholar
     

  • 146.

    Elomaa, H., Sinisalo, P., Rintala, L., Aromaa, J. & Lundström, M. Process simulation and gate-to-gate life cycle assessment of hydrometallurgical refractory gold concentrate processing. Int. J. Life Cycle Assess. 25, 456–477 (2020).

    Article 

    Google Scholar
     

  • 147.

    Pell, R. et al. Environmental optimisation of mine scheduling through life cycle assessment integration. Resour. Conserv. Recycl. 142, 267–276 (2019). Development of a methodology to schedule a mine by integrating environmental parameters such as global warming potential within the cost model.

    Article 

    Google Scholar
     

  • 148.

    Maennling, N. & Toledano, P. The renewable power of the mine (Columbia Center on Sustainable Investment, 2018).

  • 149.

    Gallios, G. P. & Matis, K. A. Mineral Processing and the Environment (Springer, 2013).

  • 150.

    Jenssen, M. M. & de Boer, L. Implementing life cycle assessment in green supplier selection: a systematic review and conceptual model. J. Clean. Prod. 229, 1198–1210 (2019).

    Article 

    Google Scholar
     

  • 151.

    Garrett, D. E. Natural Soda Ash: Occurrences, Process and Use (Springer, 1992).

  • 152.

    Steinhauser, G. Cleaner production in the Solvay Process: general strategies and recent developments. J. Clean. Prod. 16, 833–841 (2008).

    Article 

    Google Scholar
     

  • 153.

    Liu, Z. National carbon emissions from the industry process: production of glass, soda ash, ammonia, calcium carbide and alumina. Appl. Energy 166, 239–244 (2016).

    Article 

    Google Scholar
     

  • 154.

    Nuss, P. & Eckelman, M. J. Life cycle assessment of metals: a scientific synthesis. PLoS ONE 9, e101298 (2014). An overview of the benchmark LCA values for elements from the periodic table.

    Article 

    Google Scholar
     

  • 155.

    Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E. & Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4, 71–79 (2021).

    Article 

    Google Scholar
     

  • 156.

    Zeng, X., Ali, S. H., Tian, J. & Li, J. Mapping anthropogenic mineral generation in China and its implications for a circular economy. Nat. Commun. 11, 1544 (2020).

    Article 

    Google Scholar
     

  • 157.

    Jin, H. et al. Life cycle assessment of emerging technologies on value recovery from hard disk drives. Resour. Conserv. Recycl. 157, 104781 (2020).

    Article 

    Google Scholar
     

  • 158.

    Mohr, M., Peters, J. F., Baumann, M. & Weil, M. Toward a cell-chemistry specific life cycle assessment of lithium-ion battery recycling processes. J. Ind. Ecol. 24, 1310–1322 (2020).

    Article 

    Google Scholar
     

  • 159.

    Falagán, C., Grail, B. M. & Johnson, D. B. New approaches for extracting and recovering metals from mine tailings. Miner. Eng. 106, 71–78 (2017).

    Article 

    Google Scholar
     

  • 160.

    Bobicki, E. R. Pre-treatment of Ultramafic Nickel Ores for Improved Mineral Carbon Sequestration (University of Alberta, 2014).

  • 161.

    Intergovernmental Panel on Climate Change. Global warming of 1.5 °C (IPCC, 2019).

  • 162.

    Kelemen, P., Benson, S. M., Pilorgé, H., Psarras, P. & Wilcox, J. An overview of the status and challenges of CO2 storage in minerals and geological formations. Front. Clim. 1, 9 (2019).

    Article 

    Google Scholar
     

  • 163.

    Harrison, A. L., Power, I. M. & Dipple, G. M. Accelerated carbonation of brucite in mine tailings for carbon sequestration. Environ. Sci. Technol. 47, 126–134 (2013).

    Article 

    Google Scholar
     

  • 164.

    Snæbjörnsdóttir, S. Ó. et al. Carbon dioxide storage through mineral carbonation. Nat. Rev. Earth Environ. 1, 90–102 (2020).

    Article 

    Google Scholar
     

  • 165.

    National Academies of Sciences, Engineering, and Medicine. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda (National Academies, 2019).

  • 166.

    Wilson, S. A. et al. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: rates, controls and prospects for carbon neutral mining. Int. J. Greenh. Gas Control 25, 121–140 (2014).

    Article 

    Google Scholar
     

  • 167.

    Gras, A. et al. Isotopic evidence of passive mineral carbonation in mine wastes from the Dumont Nickel Project (Abitibi, Quebec). Int. J. Greenh. Gas Control 60, 10–23 (2017).

    Article 

    Google Scholar
     

  • 168.

    International Energy Agency. The role of critical minerals in clean energy transitions (IEA, 2021). Identifies the critical minerals and materials that will be needed for the clean energy transition.

  • 169.

    Habib, K., Hansdóttir, S. T. & Habib, H. Critical metals for electromobility: global demand scenarios for passenger vehicles, 2015–2050. Resour. Conserv. Recycl. 154, 104603 (2020).

    Article 

    Google Scholar
     

  • 170.

    Livent. Lithium hydroxide monohydrate, battery grade CAS no.1310-66-3 (Livent, 2018).

  • 171.

    Asenbauer, J. et al. The success story of graphite as a lithium-ion anode material — fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustain. Energy Fuels 4, 5387–5416 (2020).

    Article 

    Google Scholar
     

  • 172.

    Glazier, S. L., Li, J., Louli, A. J., Allen, J. P. & Dahn, J. R. An analysis of artificial and natural graphite in lithium ion pouch cells using ultra-high precision coulometry, isothermal microcalorimetry, gas evolution, long term cycling and pressure measurements. J. Electrochem. Soc. 164, A3545–A3555 (2017).

    Article 

    Google Scholar
     

  • 173.

    Nam, K. H. in AC Motor Control and Electric Vehicle Applications 133–163 (CRC, 2017)

  • 174.

    Gorman, M. R. & Dzombak, D. A. A review of sustainable mining and resource management: transitioning from the life cycle of the mine to the life cycle of the mineral. Resour. Conserv. Recycl. 137, 281–291 (2018).

    Article 

    Google Scholar
     

  • Next Post

    German business morale falls on manufacturing 'bottleneck recession'

    BERLIN (Reuters) – German business morale fell for the 3rd month functioning in September, hit by source chain issues that are resulting in a “bottleneck recession” for companies in Europe’s biggest financial system, a study showed on Friday. FILE Picture: A crane lifts a metal coil at the storage and […]